Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(8): e29553, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38660268

ABSTRACT

In the recent development of energy storage devices, the scientific study has demonstrated a significant interest in the applications of the magnesium iron oxide (MgFe2O4) nanoparticles. In this work, we present synthesized novel MgFe2O4 nanoparticles at different molarities (0.1-0.5 M), via hydrothermal technique. An X-ray Diffractometer was used to study the phase analysis of the prepared samples at different molarities. A pure cubic phase of the MgFe2O4 is observed at molar concentrations of 0.3 M and 0.4 M. However, the mixed phases consisting of (MgFe2O4 + Î³-Fe2O3) were also observed at 0.1 M, 0.2 M, and 0.5 M. The pure cubic MgFe2O4 nanoparticles depict the large value of crystallite size, 19.5 nm, and the lowest dislocation density and strain. The vibrating Sample Magnetometer shows the ferromagnetic nature of the pure MgFe2O4 with a high saturation magnetization. The value of saturation magnetization surged from 36.88 emu/g to 55.2 emu/g at 0.4 M concentration. The dielectric response of the materials as a function of applied frequency was studied thoroughly by using an Impedance Analyzer. The highest value of dielectric constant and low tangent loss was also reported at 0.4 M. Cole-Cole plots are the affirmation of the contribution of both grains and grain boundaries in the charge mechanism. These distinctive features make the synthesized material an excellent choice for future spintronics and energy storage devices.

2.
Environ Monit Assess ; 196(5): 458, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635016

ABSTRACT

The poultry industry is a significant source of animal protein, vitamins, and minerals, particularly through the consumption of chicken meat. In order to conduct the study, 100 samples of liver, chicken feed, and drinking water were collected in nearby areas of Lahore. The investigation aims to detect the presence of specific heavy metals in the collected samples. For this purpose, atomic absorption spectroscopy (AAS) was used to detect heavy metals after proper preparation of the samples. The experimentally observed data were analyzed through a novel statistical approach known as neutrosophic statistics. It was observed that copper (Cu), zinc (Zn), and cadmium (Cd) were the most prominent metals detected with contamination above the safe limits (for chicken drinking water (Zn = 23.09±13.67 mg/L, Cu = 3.84±3.04 mg/L, Cd = 0.805±0.645 mg/L, Pb = 0.275±0.095 mg/L, As = 0.982±0.978 mg/L), for chicken feed (Zn = 2.705±0.715 mg/kg, Cu = 1.85±0.53 mg/kg, Cd = 3.065±1.185 mg/kg, Pb = 0.215±0.175 mg/kg, As = 0.68±0.22 mg/kg), and chicken's liver (Zn = 3.93±0.66 mg/kg, Cu = 1.2±0.52 mg/kg, Cd = 0.07±0.05 mg/kg, Pb = 0.805±0.775 mg/kg, As = 1.05±0.8 mg/kg)). Similarly, the statistical analysis leads that the findings emphasize the importance of monitoring and mitigating heavy metal contamination in the poultry industry to ensure the safety and quality of poultry products.


Subject(s)
Drinking Water , Metals, Heavy , Animals , Chickens , Cadmium , Pakistan , Lead , Environmental Monitoring , Zinc
3.
Heliyon ; 10(3): e24492, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38333808

ABSTRACT

Thin films of cadmium telluride (CdTe) have attained the attention of researchers due to the potential application in solar cells. However, cost-effective fabrication of solar cells based on thin films along with remarkable efficiency and control over optical properties is still a challenging task. This study presents an analysis of the structural, optical and electrical properties of undoped and Cu-doped CdTe thin films fabricated on ITO coated glass substrates using an electrodeposition process with a focus on practical applications. Electrolytes of cadmium (Cd), tellurium (Te) and copper (Cu) are prepared with a low molarity of 0.1 M. Thin films are deposited by keeping current density in the range of 0.12-0.3 mA/cm2. Copper doping is varied (2-10 wt%) for the optimized sample. X-ray diffraction crystallography indicates that both undoped CdTe and Cu-doped CdTe films crystallize into a dominant hexagonal lattice. Direct energy band gap is observed for both undoped and doped conditions. The study revealed a drop in the optical band gap energy to ∼1.46 eV with the increase in doping (Cu) concentration from 2 to 10 wt%. Increase in mobility and conductivity is observed with the increase in current density of the deposited undoped CdTe thin films. Whereas, Cu doping of 6 wt% produced thin films with acceptable mobility and conductivity for the doped samples. Furthermore, photoluminescence (PL) spectroscopy unveiled a multitude of emission peaks encompassing the visible spectrum, arising from the combination of electrons and holes through both direct and indirect recombination processes. Findings of this study suggest that chemically produced CdTe thin films would be suitable for use as low-cost applications pertaining to solar cells.

4.
J Chem Phys ; 160(3)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38230950

ABSTRACT

The semiconductor/insulator blends for organic field-effect transistors are a potential solution to improve the charge transport in the active layer by inducing phase separation in the blends. However, the technique is less investigated for long-chain conducting polymers such as Poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno [3,2-b]thiophene)] (DPPDTT), and lateral phase separation is generally reported due to the instability during solvent evaporation, which results in degraded device performance. Herein, we report how to tailor the dominant mechanism of phase separation in such blends and the molecular assembly of the polymer. For DPPDTT/PMMA blends, we found that for higher DPPDTT concentrations (more than 75%) where the vertical phase separation mechanism is dominant, PMMA assisted in the self-assembly of DPPDTT to form nanowires and micro-transport channels on top of PMMA. The formation of nanowires yielded 13 times higher mobility as compared to pristine devices. For blend ratios with DPPDTT ≤ 50%, both the competing mechanisms, vertical and lateral phase separation, are taking place. It resulted in somewhat lower charge carrier mobilities. Hence, our results show that by systematic tuning of the blend ratio, PMMA can act as an excellent binding material in long-chain polymers such as DPPDTT and produce vertically stratified and aligned structures to ensure high mobility devices.

5.
J Mech Behav Biomed Mater ; 149: 106215, 2024 01.
Article in English | MEDLINE | ID: mdl-37984284

ABSTRACT

The piezoelectric effect is widely known to have a significant physiological function in bone development, remodeling, and fracture repair. As a well-known piezoelectric material, barium titanate is particularly appealing as a scaffold layer to improve bone tissue engineering applications. Currently, the chemical bath deposition method is used to prepare green synthesized barium titanate coatings to improve mechanical and biological characteristics. Molarity of the solutions, an essential parameter in chemical synthesis, is changed at room temperature (0.1-1.2 Molar) to prepare coatings. The XRD spectra for as deposited coatings indicate amorphous behavior, while polycrystalline nature of coatings is observed after annealing (300 °C). Coatings prepared with solutions of relatively low molarities, i.e. from 0.1 to 0.8 M, exhibit mixed tetragonal - cubic phases. However, the tetragonal phase of Perovskite barium titanate is observed using solution molarities of 1.0 M and 1.2 M. Relatively high value of transmission, i.e. ∼80%, is observed for the coatings prepared with high molarities. Band gap of annealed coatings varies between 3.47 and 3.70 eV. For 1.2 M sample, the maximum spontaneous polarization (Ps) is 0.327x10-3 (µC/cm2) and the residual polarization (Pr) is 0.072x10-3 (µC/cm2). For 1.2M solution, a high hardness value (1510 HV) is recorded, with a fracture toughness of 28.80 MPam-1/2. Low values of weight loss, after dipping the coatings in simulated body fluid, is observed. The antibacterial activity of BaTiO3 is tested against E. coli and Bacillus subtilis. Drug encapsulation capability is also tested for different time intervals. As a result, CBD-based coatings are a promising nominee for use as scaffold and protective coatings.


Subject(s)
Escherichia coli , Oxides , Barium/chemistry , Titanium/pharmacology , Titanium/chemistry
6.
Molecules ; 28(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38138453

ABSTRACT

Thin films of zinc oxide (ZnO) doped with transition metals have recently gained significant attention due to their potential applications in a wide range of optoelectronic devices. This study focuses on ZnO thin films doped with the transition metals Co, Fe, and Zr, exploring various aspects of their structural, morphological, optical, electrical, and photoluminescence properties. The thin films were produced using RF and DC co-sputtering techniques. The X-ray diffraction (XRD) analysis revealed that all the doped ZnO thin films exhibited a stable wurtzite crystal structure, showcasing a higher structural stability compared to the undoped ZnO, while the atomic force microscopy (AFM) imaging highlighted a distinctive granular arrangement. Energy-dispersive X-ray spectroscopy was employed to confirm the presence of transition metals in the thin films, and Fourier-transform infrared spectroscopy (FTIR) was utilized to investigate the presence of chemical bonding. The optical characterizations indicated that doping induced changes in the optical properties of the thin films. Specifically, the doped ZnO thin film's bandgap experienced a significant reduction, decreasing from 3.34 to 3.30 eV. The photoluminescence (PL) analysis revealed distinguishable emission peaks within the optical spectrum, attributed to electronic transitions occurring between different bands or between a band and an impurity. Furthermore, the introduction of these transition metals resulted in decreased resistivity and increased conductivity, indicating their positive influence on the electrical conductivity of the thin films. This suggests potential applications in solar cells and light-emitting devices.

7.
ACS Omega ; 8(39): 36321-36332, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37810674

ABSTRACT

This work is aimed at investigating the viability of utilizing cadmium sulfide (CdS) as a buffer layer in CdTe solar cells by analyzing and assessing its optical, photoluminescence, morphological, and electrical properties. These films were fabricated using a thermal coating technique. Optical microscopy was used to observe the changes in morphology resulting from the doping of rare-earth metals such as samarium (Sm) and lanthanum (La) to CdS, while the granular-like structure of the sample was confirmed by scanning electron microscopy. The objective of incorporating Sm and La ions into CdS was to enhance photoconductivity and optimize the optical bandgap, aiming to create a viable charge transport material for photovoltaic devices with enhanced efficiency. Through that process, a noticeable decrease in transmission, from approximately 80 to 68% in the visible region, was observed. Additionally, the bandgap value was reduced from 2.43 to 2.27 eV. Furthermore, during the analysis of the photoluminescence spectra, it was observed that emission peaks occurred in the visible region. These emissions were attributed to electronic transitions that took place via band-to-band and band-to-impurity interactions. The electrical measurements showed an enhancement in conductivity due to the decrease in the bandgap. This notable consequence of the doped materials suggests their utilization in photovoltaic systems.

8.
Biomedicines ; 11(9)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37760791

ABSTRACT

Green synthesis of metallic nanoparticles is an auspicious method of preparing nanoparticles using plant extracts that have lesser toxicity to animal cells and the host. In the present work, we analyzed the antibacterial activity of Citrullus colocynthis and Psidium guajava-mediated silver nanoparticles (Cc-AgNPs and Pg-AgNPs, respectively) against Aeromonas hydrophila (A. hydrophila) in an in vivo assay employing Labeo rohita (L. rohita). L. rohita were divided into six groups for both Cc-AgNPs and Pg-AgNPs treatments separately: Control, A. hydrophila infected, A. hydrophila + Ampicillin, A. hydrophila + Cc/Pg-AgNPs (25 µg/L), A. hydrophila + Cc/Pg-AgNPs (50 µg/L), and A. hydrophila + Cc/Pg-AgNPs (75 µg/L). Changes in different bio-indicators such as hematological, histological, oxidative stress, and cytokine analysis were observed. Interestingly, the infected fish treated with both types of AgNPs (Cc-AgNPs and Pg-AgNPs) exhibited a higher survival rate than the untreated infected fish and demonstrated signs of recovery from the infection, providing a compelling indication of the positive impact of phytosynthesized AgNPs. Disruptions in hematological and histological parameters were found in the infected fish. Both Cc-AgNPs and Pg-AgNPs showed recovery on the hematological and histological parameters. Analysis of oxidative stress and cytokine markers also revealed provoking evidence of the positive impact of Cc-AgNPs and Pg-AgNPs treatment against disease progression in the infected fish. The major finding of the study was that the higher concentrations of the nanoparticles (50 µg/L in the case of Cc-AgNPs and 75 µg/L in the case of Pg-AgNPs) were more effective in fighting against disease. In conclusion, our work presents novel insights for the use of green-synthesized AgNPs as economic and innocuous antibacterial candidates in aquaculture.

9.
ACS Omega ; 8(36): 32765-32774, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37720735

ABSTRACT

In biomaterials, a substantial amount of research has been placed on the mechanical properties of biomolecules and their interactions with body fluids. Bovine serum albumin (BSA) is a widely studied model protein, while bovine submaxillary gland mucin (BSM) is another cow-derived protein frequently employed in research. Films were examined with contact resonance atomic force microscopy (CR-AFM), and the results showed that the mechanical characteristics of the films were affected by the relative humidity. We quantitatively analyze the viscoelasticity of these proteins after they have been subjected to humidity by measuring the resonance frequency and quality factor. The findings indicate that prolonged humidity exposure has a different effect on the mechanical properties of BSA and BSM films. The results show that after exposure to humidity, the resonance peaks of BSA shift to the left, indicating stiffness, while those of BSM shift to the right, indicating hydration. Moreover, BSM's hydration is caused by relative humidity, leading to a constant increase in resonance frequency and material softness. Contrarily, BSA showed a decrease in contact resonance frequency due to ongoing strain-induced deformation, indicating increased material stiffness. The findings have significance for the design and development of biomaterials for a variety of applications, such as the delivery of drugs, the engineering of tissue, and the development of biosensors. Our research demonstrates that CR-AFM has the potential to become a non-invasive and sensitive method that can be used to characterize the mechanical characteristics of biomolecules and their interactions with bodily fluids.

10.
Biomedicines ; 11(8)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37626768

ABSTRACT

The present study reports the green synthesis of silver nanoparticles from leaves' extract of Mangifera indica (M. indica) and their antibacterial efficacy against Aeromonas hydrophila (A. hydrophila) in Cirrhinus mrigala (C. mrigala). The prepared M. indica mediated silver nanoparticles (Mi-AgNPs) were found to be polycrystalline in nature, spherical in shapes with average size of 62 ± 13 nm. C. mrigala (n = ±15/group) were divided into six groups i.e., G1: control, G2: A. hydrophila challenged, G3: A. hydrophila challenged + Mi-AgNPs (0.01 mg/L), G4: A. hydrophila challenged + Mi-AgNPs (0.05 mg/L), G5: A. hydrophila challenged + Mi-AgNPs (0.1 mg/L) and G6: A. hydrophila challenged + M. indica extract (0.1 mg/L). Serum biochemical, hematological, histological and oxidative biomarkers were evaluated after 15 days of treatment. The liver enzyme activities, serum proteins, hematological parameters and oxidative stress markers were found to be altered in the challenged fish but showed retrieval effects with Mi-AgNPs treatment. The histological analysis of liver, gills and kidney of the challenged fish also showed regaining effects following Mi-AgNPs treatment. A CFU assay from muscle tissue provided quantitative data that Mi-AgNPs can hinder the bacterial proliferation in challenged fish. The findings of this work suggest that M. indica based silver nanoparticles can be promising candidates for the control and treatment of microbial infections in aquaculture.

11.
R Soc Open Sci ; 10(6): 221272, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37325589

ABSTRACT

Long-standing research efforts have enabled the widespread introduction of organic field-effect transistors (OFETs) in next-generation technologies. Concurrently, environmental and operational stability is the major bottleneck in commercializing OFETs. The underpinning mechanism behind these instabilities is still elusive. Here we demonstrate the effect of ambient air on the performance of p-type polymer field-effect transistors. After exposure to ambient air, the device showed significant variations in performance parameters for around 30 days, and then relatively stable behaviour was observed. Two competing mechanisms influencing environmental stability are the diffusion of moisture and oxygen in the metal-organic interface and the active organic layer of the OFET. We measured the time-dependent contact and channel resistances to probe which mechanism is dominant. We found that the dominant role in the degradation of the device stability is the channel resistance rather than the contact resistance. Through time-dependent Fourier transform infrared (FTIR) analysis, we systematically prove that moisture and oxygen cause performance variation in OFETs. FTIR spectra revealed that water and oxygen interact with the polymer chain and perturb its conjugation, thus resulting in degraded performance of the device upon prolonged exposure to ambient air. Our results are important in addressing the environmental instability of organic devices.

12.
J Mech Behav Biomed Mater ; 138: 105635, 2023 02.
Article in English | MEDLINE | ID: mdl-36603524

ABSTRACT

A wide range of bioactive materials have been investigated for tissue engineering and regeneration. Barium titanate is a promising smart material to be used as scaffold for bone tissue engineering. Barium titanate coatings are prepared in the present study using chemical bath deposition technique. Coatings are prepared at room temperature with the variation in solution molarity from 0.1 to 1.2 M. Perovskite tetragonal phase is observed after annealing the samples at 300 °C using 1.0-1.2 M solutions. Normal-anomalous dielectric response is observed for annealed coatings. Maximum transmission of ∼55% and ∼82% is observed under as-prepared and annealed coatings, respectivly. Variation in direct band gap, i.e. 3.45-3.64 eV, is observed with varying molarity. High hardness of the coatings (∼1180 HV) is observed at 1.2M with fracture toughness of ∼22 MPam-1/2. Biodegradation studies show smaller values of weight loss even after immersion in simulated body fluid (SBF) after 26 weeks. Barium titanate coatings also show high antioxidant activity. BaTiO3's antibacterial reaction is evaluated against microorganisms such as Escherichia coli (E. coli) and Staphylococcus aureus. Antibacterial activity shows highest zone of inhibition (∼31 mm) against Staphylococcus aureus bacteria. Quantitative real-time PCR is used to assess the gene expression profile in cultivated cells. Thus, coatings produced without the use of hazardous solvents/reagents utilizing CBD technique are a potential material for biomedical applications.


Subject(s)
Coated Materials, Biocompatible , Escherichia coli , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry , Barium , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
13.
Nanomaterials (Basel) ; 12(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36364557

ABSTRACT

The present study investigated the biomedical potential of eco-friendly Citrullus colocynthis-mediated silver nanoparticles (Cc-AgNPs). The antibacterial efficacy of Cc-AgNPs was evaluated against two multidrug-resistant pathogenic bacterial strains, Escherichia coli and Pseudomonas aeruginosa. The antiproliferative and antilipidemic performance of the prepared particles was determined against the MCF7 cell line, a breast cancer cell line. The in vitro antibacterial assay revealed that Cc-AgNPs induced dose-dependent bactericidal activity, as a considerable increase in the zone of inhibition (ZOI) was noted at higher concentrations. Reduced proliferation, migration, spheroid size, and colony formation exhibited the substantial antiproliferative potential of Cc-AgNPs against MCF7 cells. Significant alterations in the expression of cell surface markers, apoptosis, and cell proliferation genes further confirmed the antiproliferative impact of Cc-AgNPs. Moreover, Cc-AgNPs exhibited antilipidemic activity by reducing cellular cholesterol and triglyceride levels and regulating key genes involved in lipogenesis. In conclusion, these results propose that Cc-AgNPs can be employed as a potent tool for future antibacterial and anticancer applications.

14.
Nanomaterials (Basel) ; 12(21)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36364695

ABSTRACT

Aluminum nitride (AlN) is a semiconductor material possessing a hexagonal wurtzite crystal structure with a large band gap of 6.2 eV. AlN thin films have several potential applications and areas for study, particularly in optoelectronics. This research study focused on the preparation of Ni-doped AlN thin films by using DC and RF magnetron sputtering for optoelectronic applications. Additionally, a comparative analysis was also carried out on the as-deposited and annealed thin films. Several spectroscopy and microscopy techniques were considered for the characterization of structural (X-ray diffraction), morphological (SEM), chemical bonding (FTIR), and emission (PL spectroscopy) properties. The XRD results show that the thin films have an oriented c-axis hexagonal structure. SEM analysis validated the granular-like morphology of the deposited sample, and FTIR results confirm the presence of chemical bonding in deposited thin films. The photoluminescence (PL) emission spectra exhibit different peaks in the visible region when excited at different wavelengths. A sharp and intense photoluminescence peak was observed at 426 nm in the violet-blue region, which can be attributed to inter-band transitions due to the incorporation of Ni in AlN. Most of the peaks in the PL spectra occurred due to direct-band recombination and indirect impurity-band recombination. After annealing, the intensity of all observed peaks increases drastically due to the development of new phases, resulting in a decrease in defects and a corresponding increase in the crystallinity of the thin film. The observed structural, morphological, and photoluminescence results suggest that Ni: AlN is a promising candidate to be used in optoelectronics applications, specifically in photovoltaic devices and lasers.

15.
Front Microbiol ; 13: 754292, 2022.
Article in English | MEDLINE | ID: mdl-35308392

ABSTRACT

Tomato plants are prone to various biotic and abiotic stresses. Fusarium wilt is one of the most devasting diseases of tomatoes caused by Fusarium oxysporum f. sp. lycopersici, causing high yield and economic losses annually. Magnetite nanoparticles (Fe3O4 NPs) are one of the potent candidates to inhibit fungal infection by improving plant growth parameters. Spinach has been used as a starting material to synthesize green-synthesized iron oxide nanoparticles (IONPs). Various extracts, i.e., pomegranate juice, white vinegar, pomegranate peel, black coffee (BC), aloe vera peel, and aspirin, had been used as reducing/stabilizing agents to tune the properties of the Fe3O4 NPs. After utilizing spinach as a precursor and BC as a reducing agent, the X-ray diffraction (XRD) pattern showed cubic magnetite (Fe3O4) phase. Spherical-shaped nanoparticles (∼20 nm) with superparamagnetic nature indicated by scanning electron microscopy (SEM) monographs, whereas energy-dispersive X-ray gives good elemental composition in Fe3O4 NPs. A characteristic band of Fe-O at ∼ 561 cm-1 was exhibited by the Fourier transform infrared (FTIR) spectrum. X-ray photoelectron spectroscopy (XPS) results confirmed the binding energies of Fe 2p3/2 (∼710.9 eV) and Fe 2p1/2 (∼724.5 eV) while, Raman bands at ∼310 cm-1 (T2 g ), ∼550 cm-1 (T2 g ), and 670 cm-1 (A1 g ) indicated the formation of Fe3O4 NPs synthesized using BC extract. The in vitro activity of BC-Fe3O4 NPs significantly inhibited the mycelial growth of F. oxysporum both at the third and seventh day after incubation, in a dose-dependent manner. In vivo studies also exhibited a substantial reduction in disease severity and incidence by improving plant growth parameters after treatment with different concentrations of BC-Fe3O4 NPs. The increasing tendency in enzymatic activities had been measured after treatment with different concentrations of NPs both in roots and shoot of tomato plants as compared to the control. Correspondingly, the upregulation of PR-proteins and defense genes are in line with the results of the enzymatic activities. The outcome of the present findings suggests that Fe3O4 NPs has the potential to control wilt infection by enhancing plant growth. Hence, Fe3O4 NPs, being non-phytotoxic, have impending scope in the agriculture sector to attain higher yield by managing plant diseases.

16.
J Nanobiotechnology ; 20(1): 8, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34983521

ABSTRACT

BACKGROUND: Changing climate enhances the survival of pests and pathogens, which eventually affects crop yield and reduces its economic value. Novel approaches should be employed to ensure sustainable food security. Nano-based agri-chemicals provide a distinctive mechanism to increase productivity and manage phytopathogens, with minimal environmental distress. In vitro and in greenhouse studies were conducted to evaluate the potential of green-synthesized iron-oxide nanoparticles (IONPs) in suppressing wilt infection caused by Fusarium oxysporum f. sp. lycospersici, and improving tomato growth (Solanum lycopersicum) and fruit quality. RESULTS: Various microwave powers (100-1000 W) were used to modulate the properties of the green-synthesized IONPs, using spinach as a starting material. The IONPs stabilized with black coffee extract were substantively characterized using X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy, dielectric and impedance spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning and transmission electron microscopy (SEM and TEM, respectively), and magnetization analysis. XRD revealed a cubic magnetite (Fe3O4) phase with super-paramagnetic nature, detected at all microwave powers. The binding energies of Fe 2p3/2 (710.9 eV) and Fe 2p1/2 (724.5 eV) of Fe3O4 NPs were confirmed using XPS analysis at a microwave power of 1000 W. Uniform, spherical/cubical-shaped particles with an average diameter of 4 nm were confirmed using SEM and TEM analysis. A significant reduction in mycelial growth and spore germination was observed upon exposure to different IONP treatments. Malformed mycelium, DNA fragmentation, alternation in the cell membrane, and ROS production in F. oxysporum indicated the anti-microbial potential of the IONPs. The particles were applied both through the root (before transplantation) and by means of foliar application (after two weeks) to the infected seedlings. IONPs significantly reduced disease severity by an average of 47.8%, resulting in increased plant growth variables after exposure to 12.5 µg/mL of IONPs. Analysis of photosynthetic pigments, phenolic compounds, and anti-oxidant enzymes in the roots and shoots showed an increasing trend after exposure to various concentrations of IONPs. Correspondingly, lycopene, vitamin C, total flavonoids, and protein content were substantially improved in tomato fruits after treatment with IONPs. CONCLUSION: The findings of the current investigation suggested that the synthesized IONPs display anti-fungal and nutritional properties that can help to manage Fusarium wilt disease, resulting in enhanced plant growth and fruit quality.


Subject(s)
Antifungal Agents , Fusarium/drug effects , Magnetic Iron Oxide Nanoparticles , Solanum lycopersicum , Spinacia oleracea/metabolism , Antifungal Agents/chemistry , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Solanum lycopersicum/immunology , Solanum lycopersicum/microbiology , Microwaves , Plant Diseases/microbiology , Plant Diseases/prevention & control
17.
J Mech Behav Biomed Mater ; 126: 105016, 2022 02.
Article in English | MEDLINE | ID: mdl-34871959

ABSTRACT

The effect of neodymium (Nd+3) on ZnO thin films has been studied with varying Nd doping percentage ranging from 1 to 5 wt%. XRD graphs confirmed that Nd ions have incorporated into the ZnO lattice without any structural modification. The increase of crystallite size was observed to vary from 27.5 to 31.90 nm with the increment in Nd amount. The optical spectra exhibited transparency in the visible region. The higher transmission was possessed at 1 wt at% Nd concentration. The band gap of Nd-doped ZnO thin films showed variation with the increase in Nd dopant concentration. The increment in dielectric constant and tangent loss was observed with the increase in Nd doping. The change in DC conductivity with frequency was measured by using Jonscher's power law while AC conductivity was explained with the hopping-barrier mechanism. The effects of Nd concentration on antibacterial efficiency against four different bacterial strains Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Klebsiella Pneumonia (K. Pneumonia), and Staphylococcus aureus (S. aureus) were investigated whereas antifungal activity of Nd-ZnO was done against Aspergillus fumigate by using agar disc-diffusion method. ZnO with 4 wt % Nd demonstrated the best photo-catalytic property.


Subject(s)
Nanostructures , Zinc Oxide , Anti-Bacterial Agents/pharmacology , Escherichia coli , Staphylococcus aureus
18.
Mater Sci Eng C Mater Biol Appl ; 120: 111653, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33545821

ABSTRACT

Demand of bioactive materials that may create a bacteria-free environment while healing and regenerating the defect area is increasing day by day. Zirconia is a very interesting material because of its biocompatibility and high fracture toughness. In this research work, zirconia nanoparticles (NPs) have been synthesized using sol-gel method. Molarity of sols is varied in the range of 25 to 125 mM. The effect of acidic and basic nature of sols is studied by maintaining acidic (2) and basic (9) pH. As-synthesized NPs are made soluble in deionized (DI) water using tangerine drops. Dissolved NPs are spin coated onto glass substrate prior to characterization. Pure tetragonal phase, observed under all conditions using basic medium (pH 9), is accompanied by smaller crystallite size and unit cell volume. Presence of stabilized zirconia phase leads to higher value of density and higher mechanical strength. Nanodendrites with distinct features are observed for the sample prepared with high molarity using basic medium. Whereas, soft agglomerated nanodendrites are observed using acidic medium. Optical properties show transmission of 60-80% in the visible and infrared regions for acidic based samples and ~84% for basic samples. Direct energy band gap is varied from 4.96 eV to 5.1 eV in acidic (pH 2) and 4.91 eV to 4.97 eV in basic (pH 9) media. FTIR spectra show the formation of fundamental tetragonal band at 490 cm-1 for basic samples. Antibacterial response of zirconia is tested against E. coli, Streptococcus and Bacillus bacteria. Human teeth, bare and zirconia coated, are tested for their possible weight loss after dipping in various beverages. Zirconia coated tooth shows negligible degradation in hardness and weight after 24 hr dipping period. Thus, coatings prepared using water soluble zirconia (WSZ) nanoparticles, without the use of toxic solvents/reagents, are promising material to be used as protective coatings in biomedical applications.


Subject(s)
Escherichia coli , Nanoparticles , Hardness , Humans , Materials Testing , Surface Properties , Zirconium
19.
Life Sci ; 271: 119070, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33465388

ABSTRACT

AIMS: In vivo biodistribution of radio labeled ZrO2 nanoparticles is addressed for better imaging, therapy and diagnosis. Nanoparticles are synthesized by microwave assisted sol-gel technique using Fe3O4 as a stabilizer. Antioxidant assay, hemolytic activity in human blood and biodistribution in rabbits was explored to study the therapeutical as well as in vivo targeted diagnostic applications of as synthesized nanoparticles. MAIN METHODS: Fe3O4 stabilized zirconia nanoparticles are synthesized using microwave assisted sol-gel method. Microwave (MW) powers are varied in the range of 100 to 1000 W. As synthesized nanoparticles are evaluated using different characterizations such as X-ray diffractometer, scanning electron microscope, Raman spectroscopy, impedance analyzer, Vickers micro hardness indenter, FTIR, and UV-Vis spectroscopy. In vitro activity of synthesized nanoparticles is checked in freshly extracted human blood serum. To study biodistribution of Fe3O4 stabilized zirconia nanoparticles in rabbit, technetium-99 m was used for labeling purpose. The labeling efficacy and stability of labeled nanoparticles are also measured with instant thin layer chromatography (ITLC) method. Intravenous injection of 99mTc-Fe3O4 stabilized zirconia nanoparticles (0.2 ml), containing 110 MBq of radioactivity, is performed to study the biodistribution; nanoparticles are injected into the ear vein of animal (rabbit). KEY FINDINGS: Zirconia (ZrO2) nanoparticles (NPs) are stabilized using Fe3O4 that were prepared by means of microwave assisted sol-gel method. Crystallite size (~20 nm) agrees well with the values required to stabilize tetragonal zirconia (t-ZrO2). Volume shrinkage results in high value of hardness (~1369). Dielectric constant values, compatible for biomedical application, are observed for tetragonally stabilized samples. Low value of hemolytic response is observed for Fe3O4 stabilized ZrO2 NPs. 99mTc radio labeled ZrO2 NPs proved to be potential candidate to study biodistribution. Biodistribution studies show stability of radiolabeled NPs in the original suspension as well as in blood serum. CT scan of rabbit is performed for several times to check the biodistribution of NPs with time and survival of rabbit. Results suggest that these NPs can also be used as targeted nanoparticles as well as variants of drug payload carrier. SIGNIFICANCE: Results signify that Fe3O4 stabilized ZrO2 nanoparticles synthesized by microwave assisted sol-gel method may be considered as "all-rounder" nanoplatform and are safe enough to be used in diagnostic as well as therapeutic purposes.


Subject(s)
Ferric Compounds/metabolism , Free Radical Scavengers/metabolism , Microwaves , Nanoparticles/metabolism , Radioimmunodetection/methods , Zirconium/metabolism , Animals , Ferric Compounds/chemical synthesis , Humans , Nanoparticles/chemistry , Rabbits , Technetium/metabolism , Tissue Distribution/physiology , X-Ray Diffraction/methods , Zirconium/chemistry
20.
R Soc Open Sci ; 7(9): 200540, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33047022

ABSTRACT

We report here biosynthesis of silver nanoparticles (AgNPs) using aqueous extracts of (i) Azadirachta indica leaves and (ii) Citrullus colocynthis fruit and their larvicidal activity against Aedes aegypti. The UV-Vis spectroscopy absorption peaks occurred in the range of 412-416 nm for A. indica AgNPs and 416-431 nm for C. colocynthis AgNPs indicating the silver nature of prepared colloidal samples. The scanning electron microscopy examination revealed the spherical morphology of both types of NPs with average size of 17 ± 4 nm (A. indica AgNPs) and 26 ± 5 nm (C. colocynthis AgNPs). The X-ray diffraction pattern confirmed the face-centred cubic (FCC) structure with crystallite size of 11 ± 1 nm (A. indica AgNPs) and 15 ± 1 nm (C. colocynthis AgNPs) while characteristic peaks appearing in Fourier transform infrared spectroscopy analysis indicated the attachment of different biomolecules on AgNPs. The larvicidal activity at different concentrations of synthesized AgNPs (1-20 mg l-1) and extracts (0.5-1.5%) against Aedes aegypti was examined for 24 h. A concentration-dependent larvicidal potential of both types of AgNPs was observed. The LC50 values were found to be 0.3 and 1.25 mg l-1 for C. colocynthis AgNPs and A. indica AgNPs, respectively. However, both extracts did not exhibit any notable larvicidal activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...